A Guide to Johne’s Disease for Northern Ireland farmers and vets

Developed and Led by:

www.johnesni.com
Johne’s disease – The Facts

Johne’s disease (JD) in cattle is caused by a bacterial infection. The name of the bacterium is *Mycobacterium avium sub-species paratuberculosis*, which is more commonly referred to as ‘MAP’.

Initially, the bacteria live in the gut of infected cattle where they grow and slowly cause damage. As the disease progresses, the bacteria spread to other parts of the body including the udder, womb and lymph nodes.

Importantly, MAP does not always infect an animal after exposure. When infection does occur, the clinical signs of disease do not occur immediately.

An infected animal can shed the bacteria to infect others before developing signs of disease.

Which animals are susceptible?
Young animals (especially in the first months of life) are most susceptible to MAP infection when exposed. Older animals are less likely to become infected, but they are probably never completely resistant.

How long does it take for clinical signs to develop?
The time required before an infected animal will show signs of disease is very variable, but usually it takes several years. Disease can occur more quickly (within months) when an animal is infected with a large amount of bacteria.

Signs of Johne’s disease

Signs of Johne’s disease are typically seen in animals that are between 3 and 5 years old but can occasionally be seen in animals that are younger than two years of age.

Typical signs include:
- reduced production (lower milk yield and lower feed conversion)
- weight-loss despite a good appetite
- scour (not bloody)
- soft swelling of the jaw (bottle jaw) or brisket

As the animal gets older, the signs become more obvious. An infected animal may also suffer reduced production, reduced fertility performance and increased susceptibility to other diseases before the obvious signs occur. As infection progresses signs become more pronounced, ultimately leading to death.

If animals are culled because of reduced performance, infertility or other disease, an infected herd may never have cows with the more obvious signs of Johne’s disease.

There is no effective treatment for Johne’s disease. While vaccination is available in N. Ireland its use is restricted due to its potential effect on the SICTT (TB skin test) sensitivity. Vaccination can ameliorate the severity of clinical signs if applied before a calf becomes infected but it does not prevent infection and no tests are available to differentiate vaccinated from infected cattle. Prior to vaccination advice should be sought from your veterinary practitioner and DARD.

Johne’s disease in an individual animal

MAP bacteria slowly damage the intestines of infected animals. The signs get worse with time because the gut becomes increasingly damaged.

This progression is irreversible and can be described in 3 steps from the moment of infection. As the disease progresses, the level of shedding and reliability of diagnostic tests typically both increase.

Economic Impact

The economic impact of having Johne’s disease in a herd depends on how many animals are infectious or affected. In herds with a very low prevalence it can be difficult to identify any economic loss. However, as the disease advances in individual animals and spreads to more animals in a herd the economic impact will increase.

Estimating the economic impact of infection is challenging but one study suggested that carcase weights of infected cattle were reduced by between 4% and 12% depending on the severity of infection compared to uninfected cattle. For sero-positive cows, life expectancy was reduced by about one year. In another study, milk yields in test positive cows were reduced by 3 to 9% compared to test negative cows which in this study equated to a reduced lactation yield of between 253kg and 883kg.

www.johnesni.com
Spread of Johne's disease on an infected farm

Johne's disease typically spreads on a farm when MAP bacteria are passed from infectious or affected animals to young calves and other susceptible animals. Older animals are likely to be the highest shedders and young animals (in the first months of life) are most susceptible to infection. Any young animals infected in this way will only develop noticeable signs of Johne's disease approximately 2-5 years later.

Animals can become infected in two ways:

1. from dung, colostrum and milk: animals can be infected by swallowing MAP bacteria in dung, colostrum or milk, e.g. from dung-contaminated teats or bedding
2. in the womb: calves can be infected in the womb if the dam is infected. This becomes increasingly common as the disease progresses in the dam.

Once MAP bacteria have been shed they can remain infective (e.g. in slurry or the farm environment) for many months and sometimes for over a year.

Management practices that can increase unseen spread

Some common management practices can dramatically increase the rate of spread of Johne's disease on an infected farm. This occurs when a single infected cow feeds or is in contact with several calves.

- Feeding pooled colostrum or milk to calves.
- Having adult cows share accommodation with several calves / young animals.
- Spreading slurry from adults onto land grazed by calves / young animals.
- Inadequately cleaned pens between calvings.

Johne's disease spreading between farms

Johne's disease is known to spread between different farms in two ways:

1. when an infected animal is introduced.
2. when the colostrum, milk or dung from an infected farm contacts susceptible animals (especially calves) on another farm.

1. Spread between herds by an infected animal

This is the most common way for Johne's disease to move between farms.

Apparently healthy MAP carriers can shed the bacteria in colostrum, milk and dung and also pass it to their unborn calves. As they have no signs of ill-health, these animals are frequently bought and sold between farms without any knowledge that they are infected with and may be shedding MAP bacteria.

When they arrive on a new farm, ‘unseen spread’ can infect many replacement calves before the signs of Johne's disease are detected.

Infected animals will rarely test positive until they have been infected for several years. Young breeding animals that test negative must not be assumed to be free from infection.
2. Spread between herds in colostrum, milk and dung

This is the second most common way that Johne's disease spreads between farms. When the colostrum, milk or dung from an infected farm comes in contact with young and susceptible animals on another farm, there is a risk that MAP will spread. Common management practices that facilitate spread between farms in this way can be ranked as higher, moderate and lower risks for the introduction of Johne's disease.

- **Highest Risk**
 - Bringing in infected animals from another farm. These animals may appear quite normal, with a negative test result, especially early in the disease process.

- **High Risk**
 - Bringing in colostrum from another farm to feed to calves
 - Bringing in milk from another farm to feed to calves
 - Spreading slurry from another farm onto land grazed by young animals
 - Sending heifers to be reared on a unit that does any of the above

- **Moderate Risk**
 - Using dirty equipment (trailers, crush etc) that is shared between several farms when working with young animals
 - Farm visitors with dirty outer clothing working directly with young animals

- **Lower Risk**
 - Using dirty equipment (trailers, crush etc) that is shared between several farms when working with adult stock
 - Farm visitors with dirty outer clothing working with older stock

Figure 3. Risks of Johne's disease spread between farms

What should I do about Johne's disease

If you are worried about the presence or extent of Johne's disease in your herd, you can assess the risk to your stock by answering the following three questions:

1. **Am I likely to have Johne's disease in my herd?**

 Estimating the prevalence of infection nationally is difficult given that the tests currently available fail to detect many infected cattle particularly those during the earlier phases of infection. In the UK a dairy herd survey estimated that approximately 35% of herds were infected. In the Republic of Ireland it is estimated that currently around 20% of dairy herds and 6% of beef herds are infected with Johne's disease. While no survey specifically in N. Ireland has been carried out it is likely that the proportion of infected herds is within the range of these figures.

 The following two steps can help you decide if your herd is likely to be infected:

 A farm risk assessment

 Conducted by your local vet, a farm risk assessment will help to determine the risk of infection, after considering:

 - **Stock Purchases**

 The more animals you have introduced into your herd in past years, the more likely you are to have brought Johne's disease into the herd. Re-population and rapid increase in cow numbers may pose particular risks.

 - **Clinical Cases**

 If you have had adult animals with signs suggestive of Johne's disease, your herd is at high risk of being infected. However, even without signs of Johne's disease, the herd may still be infected with animals in the earlier stages of infection.

 - **Introduction of Colostrum, Milk and Dung**

 The more colostrum, milk or dung that has come onto your farm from outside farms in recent years, the more likely you are to have brought in Johne's disease. Use Figure 3 to alert you to activities that might bring MAP into your herd.

 Herd testing

 Individual testing of all animals over 2 years of age will give an initial indication of the herd status. Note that while a negative herd test is an encouraging start, it is not conclusive evidence that the herd is free from infection (due to the limitations with the tests as discussed in this leaflet). Repeated negative tests, along with management practices to stop entry of infection (see below) give increasing confidence in the Johne's free status of such herds. See the Animal Health and Welfare Northern Ireland website (www.animalhealthni.com) for details of herd testing programmes.

2. **Am I at continued risk of bringing Johne's disease into my herd?**

 This will be determined by your local vet as part of a farm risk assessment. If you are purchasing stock regularly you remain at a higher risk of bringing Johne's disease into your herd. Remember a negative pre-purchase test result does not give reliable information about the potential carrier status of incoming stock. If you are carrying out any of the other management activities listed in figure 3 you are at continued risk of bringing Johne's disease into your herd in colostrum, milk and dung.
3. Does my herd management allow rapid spread of Johne’s disease?

MAP spreads from infectious and affected animals to young and susceptible animals in dung, colostrum, milk and to the unborn calf. Any management practices that allow a single adult to contact or feed several calves can increase the rate of spread.

See the management practices listed earlier that are likely to increase spread of Johne’s disease on your farm. Remember that this list is not exhaustive, and you should review your calving and calf rearing practices in detail to identify practices that might increase the rate of spread. Your local vet can help you to conduct a risk assessment which can help measure the risk of practices within the farm that could allow the rapid spread of Johne’s disease within your farm.

A farm risk assessment will help you determine the likelihood that Johne’s disease is present in your herd.

The limitations of Johne’s disease testing

There are two useful rules for all Johne’s disease tests:

• it is common for an infected animal to have a negative test result (e.g. an incorrect test result) especially early in the disease process. A single negative result does not mean that an animal is not infected, and

• test results need to be interpreted in the light of how likely it is that infection is present on the farm.

Reliability of Johne’s Tests

When a test gives the wrong result it can happen either:

• By giving a negative result when testing an infected animal. This is called a ‘False Negative’ result and happens very frequently with Johne’s disease tests. A ‘Sensitivity’ score (0-100%) indicates how often the test gives a positive result when testing infected animals (the lower the number the poorer the sensitivity).

• By giving a positive result when testing a non-infected animal. This is called a ‘False Positive’ and happens only occasionally with Johne’s disease tests. A ‘Specificity’ score (0-100%) indicates how often the test gives a negative result when testing non-infected animals (the higher the number the better the specificity).

Sensitivity scores can be very poor for Johne’s disease tests. Sensitivity scores improve as Johne’s disease progresses from infected to infectious to affected disease categories. The following table gives relative scores for commonly used Johne’s disease tests.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>False Positive</th>
<th>Specificity</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAECAL CULTURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Positive</td>
<td>Very Rare</td>
<td>Specificity is almost 100%</td>
<td></td>
</tr>
<tr>
<td>False Negative</td>
<td>Very Common</td>
<td>Sensitivity 16-30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIVIDUAL BLOOD ELISA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Positive</td>
<td>Occasional</td>
<td>Specificity 95-100%</td>
<td></td>
</tr>
<tr>
<td>False Negative</td>
<td>Very Common</td>
<td>Sensitivity 7-22%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIVIDUAL MILK ELISA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Positive</td>
<td>Occasional</td>
<td>Specificity 95-100%</td>
<td></td>
</tr>
<tr>
<td>False Negative</td>
<td>Very Common</td>
<td>Sensitivity 6-18%</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Test Characteristics

Only three Johne’s disease tests are currently recommended by Animal Health and Welfare Northern Ireland, each based on samples collected from individual animals: the serum ELISA, the milk ELISA and faecal culture. PCR, which is a test that detects the genetic material of MAP, is currently undergoing evaluation. For the most up to date information on recommended tests go to www.animalhealthni.com.

Bulk tank milk testing is not reliable

A bulk milk test is not a reliable way to test a herd. Although a positive result indicates a high risk of infection, it is misleading to assume that your herd is not infected with Johne’s disease based on negative bulk milk antibody results.

False negative results are common, and repeated negative tests of individual animals in the herd coupled with low risk management practices are the only way to build confidence that animals are not infected with Johne’s disease.
How do I stop Johne’s disease coming into my farm?

To stop Johne’s disease coming into your farm, reducing the risk from purchased stock should be the first priority. The only way to prevent this risk is **to not buy in any stock** (including purchasing / hiring bulls).

Reducing the risk of introducing Johne’s disease with purchased stock is very difficult because:

1. pre-introduction testing does not reliably identify carrier animals
2. there are very few known disease free herds from which to buy stock.

Infected animals will rarely test positive until they have been infected for several years. Young breeding animals that test negative must not be assumed to be free from infection.

If a herd can be found that demonstrates a high confidence of being free of Johne’s disease, then purchasing stock from this herd would be a lower risk. However such a herd will need to have undergone repeated testing over several years and be using good bio-security practices to avoid the introduction of infection.

The other risk of bringing Johne’s disease into your herd is through dung, colostrum and milk from an outside farm.

Start controlling Johne’s disease on your farm

If Johne’s disease is in your herd then on-farm control measures should be started. **Control of Johne’s disease in a herd requires a long-term commitment as prevalence of infection cannot be reduced, or disease eradicated quickly.**

The principles of control are to:

- **reduce new cases** by protecting young animals from exposure to potentially infected dung, colostrum and milk.
- **reduce shedding** into the farm environment by finding and removing infectious animals by repeated individual animal testing.
- **prevent MAP bacteria coming into the herd from other farms** as detailed above.

These three principles must all be achieved together to reduce the spread of Johne’s disease in a herd.

Reducing new cases may require changing calving, calf rearing, animal housing and slurry management practices to prevent rapid spread. Identifying infectious cows will require repeated individual animal testing over a long period of time.

Specific control options are varied and different options will suit different farms. Work with your local vet to conduct a risk assessment and then identify control options that suit you. Check the Animal Health and Welfare Northern Ireland website (www.animalhealthni.com) for up to date advice on controlling Johne’s disease in your herd.

Technical Working Group: Prof Simon Mare (Chair) - UCD CVERA, Damien Barrett - Regional Dr David Veterinary Laboratory Sligo, DAFM, Bill Cashman - Veterinary Practitioner Cork, Jim Buckley - Cork County Council, Richard Fallion, Dr Margaret Good - DAFM, Graham - AHI, Kevin Kenny - Central Veterinary Research Laboratory, DAFM, Dr John Mee - Teagasc Moorepark, Giaran Mollet - Vet Practitioner Meath, Peter Mullanwney - DAFM, Dr Sam Strain - AHWNI, Dr Paul Whyte - UCD School of Agriculture, Food Science and Veterinary Medicine

TWG Rapporteur: Fionnuala Malone, AHI.

Leaflet Compiled by: Tim Geraghty - Scottish Centre for Production Animal Health and Food Safety, School of Veterinary Medicine, University of Glasgow.

Peer Review By: George Caldow, BVMS, MSc, CertCHP, DipECBHIM, MRCS, Veterinary Services, Scottish Agricultural College and Keith Cutler, BSc BVSc Dip.ECBHIM MRCS, Endell Veterinary Group, United Kingdom.

INTELLECTUAL PROPERTY: All images contained in this leaflet are the property of AHI, or have been included with the permission of the owner.

Please seek permission from AHI if you wish to use these images and provide the correct attribution of ownership when reproducing them. Some of the images in this document were provided by UCD School of Veterinary Medicine (images page 2). All other images are property of Animal Health Ireland. If reusing any other material in this leaflet, please attribute AHI as the source and reproduce the following disclaimer in full.

IMPORTANT NOTICE - DISCLAIMER

This leaflet is issued and shall be read only on the basis that it will not relied upon by any person as a basis for any act or omission or otherwise without obtaining professional veterinary and health and safety verification and advice and that no liability or responsibility to any person is accepted or shall be incurred, and no recourse or claim by any person will be made, by or against AHI, AHWNI, any stakeholder, collaborator, officer, agent, subcontractor or employee of AHI or AHWNI, any member of the Technical Working Group, any contributor to, author, publisher, distributor, reviewer, compiler or promoter of or any other person in respect of or in connection with the leaflet or the contents thereof or any matter omitted therefrom.

No representation or guarantee is given, whether by AHI, AHWNI or any other such person, that the contents of this information leaflet are comprehensive, up to date, or free from error or omissions, nor that the advice provided is appropriate in every particular circumstance.

The contents of this information leaflet are not intended to be a substitute for appropriate direct advice from your veterinary practitioner. Appropriate veterinary and health and safety advice should be taken before taking or refraining from taking action in relation to the animal disease dealt with in this information leaflet.

The contents of this leaflet may be updated, corrected, varied or superseded from time to time by later publications or material on the AHWNI website and reference should be made to that website accordingly.

Any references in this booklet or links in the AHWNI website to external websites or other resources are provided for convenience only and the content thereof are not to be considered as endorsed thereby.